Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jan 21, 2025
Abstract:Open Information Extraction (Open IE) is the task of extracting structured information from textual documents, independent of domain. While traditional Open IE methods were based on unsupervised approaches, recently, with the emergence of robust annotated datasets, new data-based approaches have been developed to achieve better results. These innovations, however, have focused mainly on the English language due to a lack of datasets and the difficulty of constructing such resources for other languages. In this work, we present a high-quality manually annotated corpus for Open Information Extraction in the Portuguese language, based on a rigorous methodology grounded in established semantic theories. We discuss the challenges encountered in the annotation process, propose a set of structural and contextual annotation rules, and validate our corpus by evaluating the performance of state-of-the-art Open IE systems. Our resource addresses the lack of datasets for Open IE in Portuguese and can support the development and evaluation of new methods and systems in this area.
Via
Jan 21, 2025
Abstract:Table Structure Recognition (TSR) is a task aimed at converting table images into a machine-readable format (e.g. HTML), to facilitate other applications such as information retrieval. Recent works tackle this problem by identifying the HTML tags and text regions, where the latter is used for text extraction from the table document. These works however, suffer from misalignment issues when mapping text into the identified text regions. In this paper, we introduce a new TSR framework, called TFLOP (TSR Framework with LayOut Pointer mechanism), which reformulates the conventional text region prediction and matching into a direct text region pointing problem. Specifically, TFLOP utilizes text region information to identify both the table's structure tags and its aligned text regions, simultaneously. Without the need for region prediction and alignment, TFLOP circumvents the additional text region matching stage, which requires finely-calibrated post-processing. TFLOP also employs span-aware contrastive supervision to enhance the pointing mechanism in tables with complex structure. As a result, TFLOP achieves the state-of-the-art performance across multiple benchmarks such as PubTabNet, FinTabNet, and SynthTabNet. In our extensive experiments, TFLOP not only exhibits competitive performance but also shows promising results on industrial document TSR scenarios such as documents with watermarks or in non-English domain.
* Published in IJCAI Proceedings 2024
Via
Jan 20, 2025
Abstract:Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image.
Via
Jan 21, 2025
Abstract:Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.
Via
Jan 20, 2025
Abstract:Recently, Multimodal Large Language Models (MLLMs) have demonstrated their immense potential in computer-aided diagnosis and decision-making. In the context of robotic-assisted surgery, MLLMs can serve as effective tools for surgical training and guidance. However, there is still a lack of MLLMs specialized for surgical scene understanding in clinical applications. In this work, we introduce EndoChat to address various dialogue paradigms and subtasks in surgical scene understanding that surgeons encounter. To train our EndoChat, we construct the Surg-396K dataset through a novel pipeline that systematically extracts surgical information and generates structured annotations based on collected large-scale endoscopic surgery datasets. Furthermore, we introduce a multi-scale visual token interaction mechanism and a visual contrast-based reasoning mechanism to enhance the model's representation learning and reasoning capabilities. Our model achieves state-of-the-art performance across five dialogue paradigms and eight surgical scene understanding tasks. Additionally, we conduct evaluations with professional surgeons, most of whom provide positive feedback on collaborating with EndoChat. Overall, these results demonstrate that our EndoChat has great potential to significantly advance training and automation in robotic-assisted surgery.
Via
Jan 21, 2025
Abstract:Retinal diseases are a leading cause of vision impairment and blindness, with timely diagnosis being critical for effective treatment. Optical Coherence Tomography (OCT) has become a standard imaging modality for retinal disease diagnosis, but OCT images often suffer from issues such as speckle noise, complex lesion shapes, and varying lesion sizes, making interpretation challenging. In this paper, we propose a novel framework, WaveNet-SF, to enhance retinal disease detection by integrating spatial-domain and frequency-domain learning. The framework utilizes wavelet transforms to decompose OCT images into low- and high-frequency components, enabling the model to extract both global structural features and fine-grained details. To improve lesion detection, we introduce a multi-scale wavelet spatial attention (MSW-SA) module, which enhances the model's focus on regions of interest at multiple scales. Additionally, a high-frequency feature compensation block (HFFC) is incorporated to recover edge information lost during wavelet decomposition, suppress noise, and preserve fine details crucial for lesion detection. Our approach achieves state-of-the-art (SOTA) classification accuracies of 97.82% and 99. 58% on the OCT-C8 and OCT2017 datasets, respectively, surpassing existing methods. These results demonstrate the efficacy of WaveNet-SF in addressing the challenges of OCT image analysis and its potential as a powerful tool for retinal disease diagnosis.
Via
Jan 21, 2025
Abstract:Whole slide images (WSIs) are high-resolution, gigapixel sized images that pose significant computational challenges for traditional machine learning models due to their size and heterogeneity.In this paper, we present a scalable and efficient methodology for WSI classification by leveraging patch-based feature extraction, clustering, and Fisher vector encoding. Initially, WSIs are divided into fixed size patches, and deep feature embeddings are extracted from each patch using a pre-trained convolutional neural network (CNN). These patch-level embeddings are subsequently clustered using K-means clustering, where each cluster aggregates semantically similar regions of the WSI. To effectively summarize each cluster, Fisher vector representations are computed by modeling the distribution of patch embeddings in each cluster as a parametric Gaussian mixture model (GMM). The Fisher vectors from each cluster are concatenated into a high-dimensional feature vector, creating a compact and informative representation of the entire WSI. This feature vector is then used by a classifier to predict the WSI's diagnostic label. Our method captures local and global tissue structures and yields robust performance for large-scale WSI classification, demonstrating superior accuracy and scalability compared to other approaches.
Via
Jan 21, 2025
Abstract:Video deblurring is essential task for autonomous driving, facial recognition, and security surveillance. Traditional methods directly estimate motion blur kernels, often introducing artifacts and leading to poor results. Recent approaches utilize the detection of sharp frames within video sequences to enhance deblurring. However, existing datasets rely on fixed number of sharp frames, which may be too restrictive for some applications and may introduce a bias during model training. To address these limitations and enhance domain adaptability, this work first introduces GoPro Random Sharp (GoProRS), a new dataset where the the frequency of sharp frames within the sequence is customizable, allowing more diverse training and testing scenarios. Furthermore, it presents a novel video deblurring model, called SPEINet, that integrates sharp frame features into blurry frame reconstruction through an attention-based encoder-decoder architecture, a lightweight yet robust sharp frame detection and an edge extraction phase. Extensive experimental results demonstrate that SPEINet outperforms state-of-the-art methods across multiple datasets, achieving an average of +3.2% PSNR improvement over recent techniques. Given such promising results, we believe that both the proposed model and dataset pave the way for future advancements in video deblurring based on the detection of sharp frames.
* Under review in Pattern Recognition
Via
Jan 21, 2025
Abstract:Accurate models are essential for design, performance prediction, control, and diagnostics in complex engineering systems. Physics-based models excel during the design phase but often become outdated during system deployment due to changing operational conditions, unknown interactions, excitations, and parametric drift. While data-based models can capture the current state of complex systems, they face significant challenges, including excessive data dependence, limited generalizability to changing conditions, and inability to predict parametric dependence. This has led to combining physics and data in modeling, termed physics-infused machine learning, often using numerical simulations from physics-based models. This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models. The goal is to create a hybrid adaptive modeling framework that integrates data-based modeling with newly measured data and analytical nonlinear dynamical models for enhanced accuracy, parametric dependence, and improved generalizability. By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations. In particular, perturbation methods are utilized to derive asymptotic solutions which are parameterized to generate frequency responses. Frequency responses provide comprehensive insights into dynamics and nonlinearity which are quantified and extracted as high-quality features. A machine-learning model, trained by these features, tracks parameter variations and updates the mismatched model. The results demonstrate that this adaptive modeling method outperforms numerical gray box models in prediction accuracy and computational efficiency.
Via
Jan 20, 2025
Abstract:3D Gaussian Splatting (3DGS) has shown remarkable performance in novel view synthesis. However, its rendering quality deteriorates with sparse inphut views, leading to distorted content and reduced details. This limitation hinders its practical application. To address this issue, we propose a sparse-view 3DGS method. Given the inherently ill-posed nature of sparse-view rendering, incorporating prior information is crucial. We propose a semantic regularization technique, using features extracted from the pretrained DINO-ViT model, to ensure multi-view semantic consistency. Additionally, we propose local depth regularization, which constrains depth values to improve generalization on unseen views. Our method outperforms state-of-the-art novel view synthesis approaches, achieving up to 0.4dB improvement in terms of PSNR on the LLFF dataset, with reduced distortion and enhanced visual quality.
* 5 pages, 5 figures, has been accepted by the ICASSP 2025
Via